Till innehåll på sidan
Till KTH:s startsida

Experimental investigations to maximize efficiency of CO2 vapor compression systems

CO2 is an environmentally friendly and cost-effective replacement for synthetic refrigerants used in refrigeration and heat pumps systems. Hence, the installation of CO2 refrigeration system is expected to increase in the coming years. In this project, we will experimentally verify methods to maximize the efficiency of CO2 refrigeration systems

Background

Vapor compression systems using CO2 as refrigerant gained ground in some of the most energy intensive refrigeration and heat pump applications, such as: supermarkets, ice rinks, food processing industries and hot water production for small and large scale. The number of CO2 vapor compression systems is expected to further accelerate in the coming years due to the implementation of the EU F-gas regulations, which ban installing systems with HFC’s in many application areas. The rapid increase of CO2 installations has also led to development of several solutions to increase the efficiency of the CO2 vapor compression system control. Some of these features are: overfeeding of evaporators, heat recovery, integrated air conditioning, geothermal integration, ejector and liquid ejector, and mechanical sub-cooling. These energy efficiency solutions must be refined and verified through experimental investigations

In this project we are experimentally investigating a number of these energy efficiency solutions using the facilities at the laboratory if the energy technology department at KTH. The laboratory has a 4-room climate chamber which can be maintained at two temperature levels of -10 and -35 0C. The climate chamber is cooled using a CO2 booster system equipped with two level heat recovery unit, two phase ejector, option for mechanical sub-cooling. Additionally, the lab is equipped with a CO2 test rig that can be used a cascaded system along with the cooling system of the climate chamber to independently test methods for overfeeding the evaporator and liquid ejector. These facilities will be used to experimentally investigate various energy efficiency solutions of CO2 vapor compression systems in this project

Aim and objectives

  • Experimentally evaluate features to maximize the energy efficiency of CO2 vapor compression systems

  • Experimentally evaluate at least 4 methods of overfeeding the evaporators

  • Investigate the heat recovery function of the system for the applications of space heating

  • Experimentally verify performance of the ejector and liquid ejector, domestic hot water, and exporting heat to district heating

Project partners

KTH

Advansor AB

Danfoss AB

Green & Cool

HB products

Huurre Sweden AB

ICA Fastigheter AB

IWMAC Operation Center

LU-VE Sweden AB

Svensk Energi & Kylanalys

Funding is provided by Energimyndigheten.

Timeframe: 2022-2025

Researchers

Samer Sawalha
Samer Sawalha universitetslektor
Jaime Arias Hurtado
Jaime Arias Hurtado universitetslektor
Anjan Puttige
Anjan Puttige postdoktor
Recovery of waste heat from base stations in the mobile network
Experimental investigations to maximize efficiency of CO2 vapor compression systems
Uthållig geotermisk energi för framtiden: AI in ATES
Spacergy kylpaneler för kylsystem
Varmvattensystem, förluster och Legionella
PARMENIDES – Plug & plAy EneRgy ManagEmeNt for hybriD Energy Storage
HYSTORE - Hybrid services from advanced thermal energy storage systems
Open-source models for holistic building energy system design at scale
Tank to Grave Management of new Low-GWP Refrigerants (Hantering av nya låg-GWP köldmedier från installation till destruktion)
Novel tool and guidelines for designing ground source heat pumps (GSHPs) in densely populated areas
Små ammoniaksystem
Magnetiska kylprocesser
Open-source models for holistic building energy system design at scale
GEO.POWER – Utbyte av bästa utförande inom geotermisk energi mellan europeiska regioner
Solcellar på tak av bostadrättsföreningar (avslutat)
Smarta kontrollstrategier för värmepumpsystem (avslutat)
Högupplöst GIS mappning av värmekällor för fjärrvärme
Digitalisering och IoT teknik för värmepumpsystem
Uthålliga kombisystem för uppvärmning av byggnader (avslutat)
Högupplöst GIS mappning av värmekällor för fjärrvärme
Effektivt utnyttjande av industriell spillvärme genom låg temp värmedrivna kraftcykler - en integrerad ansats för Svensk industri
Samverkan mellan livsmedelsbutiker och fastighetsägare; effektivisering och affärsmodeller av energianvändning
Digitalisering och IoT teknik för värmepumpsystem
Alternativa köldbärare för indirekta kylsystem
Funktionella ytbeläggningar för mer energieffektiva värmepumpar
Tvåfasströmning i platta kanaler
Two phase heat transfer & pressure drop with new environment friendly refrigerants in minichannels (completed)
Distribuerade kyllager i fjärrkylanät
Simulering av temperaturfördelning i borrhålslager med stöd av fiberoptiska temperaturmätning (avslutat)
4D Monitoring of BTES (avslutat)
Aquifer Thermal Energy Storage (avslutat)
Deep Borehole Heat Exchanger (avslutat)
Effektivt utnyttjande av energibrunnar för värmepumpar (avslutat)
Effektivare dimensionering av bergvärmesystem (avslutat)
SPF (avslutat)
TRIGEN
Energideklarationer
Milestone