Skip to main content
To KTH's start page

EleFanT – Electric Fan Thruster

Under the project, which spans over 1.5 years, GKN Aerospace and KTH will together develop fan technology for smaller regional aircraft. The project will study aerodynamic design, performance, noise and manufacturing technology for a ducted fan powered by electricity, either from batteries, hydrogen fuel cells or even more conventional hybrid propulsion solutions.
The proposed propulsion solution with a ducted fan instead of a conventional propeller offers significant advantages in three main areas: safety, noise level and engine installation. By rapidly demonstrating fan technology for electric aviation, the EleFanT project will accelerate the pace of electric aviation development and position the participants for international aero-engine and aircraft development projects.

Funded by

Swedish Energy Agency (through Fossilfritt Flyg 2045 program)

Time period:

1 July 2021 – 31 Dec 2022

Project partners

GKN AEROSPACE SWEDEN AB, Sweden

Aim and objectives

  • Comparison of electric ducted fan and relevant propeller configuration
  • Aerodynamic design of fan blades, OGVs and nacelle
  • Performance analysis of electric fan thruster with respect to stability margins and efficiency
  • Fan architecture will be presented in a 3D model where load carrying structures has been analyzed with respect to integration of electric motor
  • Quantification of noise levels from the electric fan thruster for relevant flight envelope
  • Choice of material for the key components motivated by safety, weight optimization and manufacturing aspects
  • Pre-study of a new electric fan test rig and certification requirements

Publications

N. Glodic et al., "Aeroelastic tailoring of fan blades for an electric fan thruster," in ISABE 2024, 2024.

Contact people

Project leader

Researchers

Mauricio Gutierrez Salas
Mauricio Gutierrez Salas researcher maugut@kth.se Profile
DARLING — Damaged and Repaired Blade Modeling with in-situ Experiments
VILD — Virtual Integrated soLutions for future Demonstrators and products
HP4NAR — Next generation Heat Pumps with NAtural Refrigerants for district heating and cooling systems
FRONTSH1P — Recycling of end-of-life wind blades through renewable energy driven molten salt pyrolysis process
I-UPS — Innovative High Temperature Heat Pump for Flexible Industrial Systems
FLUWS — Flexible Upcycled Waste Material based Sensible Thermal Energy Storage for CSP
STAMPE – Space Turbines Additive Manufacturing Performance Evaluation
Digital Twin for smart grid connected buildings
PED StepWise — Participatory Step-by-Step Implementation Process for Zero Carbon District Concepts in Existing Neighbourhoods
ADiSS — Aeroelastic Damping in Separated Flows
MERiT — Methane in Rocket nozzle cooling channels - conjugate heat Transfer measurements
CARE – Cavity Acoustics and Rossiter modEs
SCO2OP-TES – sCO2 Operating Pumped Thermal Energy Storage for grid/industry cooperation
POWDER2POWER (P2P) – MW-scale fluidized particle-driven CSP prototype demonstration
eLITHE – Electrification of ceramic industries high temperature heating equipment
DETECTIVE – Development of a Novel Tube-Bundle-Cavity Linear Receiver for CSP Applications
USES4HEAT – Underground Large Scale Seasonal Energy Storage for Decarbonized and Reliable Heat
ADA – Aggressive Duct Aerodynamics
HECTAPUS — Heating Cooling Transition and Acceleration with Phase Change Energy Utilization Storage
SUSHEAT — Smart Integration of Waste and Renewable Energy for Sustainable Heat Upgrade in the Industry
Analysis of PV system in Sweden
EVAccel — Accelerating the Integration of Electric Vehicles in a Smart and Robust Electricity Infrastructure
Towards Sustainable Energy Communities: A Case Study of Two Swedish Pilot Projects
HYBRIDplus – Advanced HYBRID solar plant with PCM storage solutions in sCO2 cycles
SHARP-SCO2 – Solar Hybrid Air-sCO2 Power Plants
RIHOND – Renewable Industrial Heat On Demand
A turnkey solution for Swedish buildings through integrated PV electricity and energy storage (PV-ESS)
A new standard methodology for assessing the environmental impact of stationary energy storage systems (LCA-SESS)
Circular Techno-Economic Analysis of Energy Storage– IEA Annex Co-coordination
Optimization of Molten Salt Electric Heaters
FLEXnCONFU: Flexiblize Combined Cycle Power Plants through Power To-X Solutions using Non-Conventional Fuels
SolarSCO2OL
PILOTS4U – A network of bioeconomy open access pilot and multipurpose demo facilities
Cavity Purge Flows inside axial turbines
Effective thermal storage systems for competitive Stirling-CSP plants
ENFLOW: Energy flow metering of natural and biogas for residential applications
H2020 Pump Heat
BRISK II – Infrastructure for Sharing Knowledge II
Improved flue gas condensate treatment in MSW incineration via membrane distillation
Integrated modelling and optimization of coupled electricity and heating networks
IntegrCiTy
Membrane distillation for advanced wastewater treatment in the semiconductor industry
Microgrid for Tezpur University
Smart and Robust Electricity Infrastructure for the Future