Skip to main content
To KTH's start page

Two-phase flow in flat channels

Refrigeration and heat pump systems today use refrigerants with high global warming potential (GWP). Within the next ten years, these will be substituted by natural and synthetic fluids with low GWP. Such fluids are always flammable and to reduce the connected risks it is important to reduce the charge of refrigerant. To achieve this, heat exchangers with small internal volume are required. New designs of the heat exchangers for low charge can simultaneously give better heat transfer, if the design is done correctly, which will increase the COP.

Funded by: Energimyndigheten

Energimyndigheten logo


Time period: 2020-12-01 – 2024-07-31

Project members: KTH Royal Institute of Technology

KTH logo

Background

Refrigeration and heat pump systems today use refrigerants with high global warming potential (GWP). Within the next ten years, these will be substituted by natural and synthetic fluids with low GWP. Such fluids are always flammable and to reduce the connected risks it is important to reduce the charge of refrigerant. To achieve this, heat exchangers with small internal volume are required. New designs of the heat exchangers for low charge can simultaneously give better heat transfer, if the design is done correctly, which will increase the COP.

This project aims to increase the understanding of how evaporators and condensers should be designed to get the best possible performance and at the same time the least possible refrigerant charge. The project is a fundamental study, but the results are expected to be easily transferred into new designs of heat exchangers. It is based on several earlier projects performed at KTH within the framework of the Effsys programs and EU-project.

Read more on the Swedish page

Project contact persons

Björn Palm
Björn Palm senior professor
Joachim Claesson
Joachim Claesson associate professor
Oxana Samoteeva
Oxana Samoteeva research engineer
Recovery of waste heat from base stations in the mobile network
Experimental investigations to maximize efficiency of CO2 vapor compression systems
Sustainable Geothermal Energy for the Future: AI in ATES
Warm water systems, losses and Legionella
PARMENIDES – Plug & plAy EneRgy ManagEmeNt for hybriD Energy Storage
HYSTORE - Hybrid services from advanced thermal energy storage systems
Open-source models for holistic building energy system design at scale
Tank to Grave Management of new Low-GWP Refrigerants (Hantering av nya låg-GWP köldmedier från installation till destruktion)
Novel tool and guidelines for designing ground source heat pumps (GSHPs) in densely populated areas
Data driven lab for building energy systems
Long-term performance measurement of GSHP systems serving commercial, institutional and multi-family buildings
Open-source models for holistic building energy system design at scale
Control systems for hybrid solutions based on biomass fueled Stirling engines, solar and wind for rural electrification
Prosumer-Centric Communication for Solar PV Diffusion (completed)
Towards Sustainable (Fossil-free) Heating System in Small Residential Buildings
Solar energy and ground source heat pumps for Swedish multi-family housing (completed)
Solar photovoltaic systems in Swedish cooperative housing (completed)
Smart Control Strategies for Heat Pump Systems (completed)
Creating and Understanding Smart Innovation in Cities
Building heating solutions in China
Accelerating innovation in buildings
High-Resolution GIS District Heating Source-Load Mapping
Digitalization and IoT technologies for Heat Pump systems
Sustainable combined systems for heating of buildings (completed)
Cost- and Energy-Efficient Control Systems for Buildings
Situation of Opportunity in the Growth and Change of three Stockholm City Districts (completed)
Wuxi Sino-Swedish Eco-City Project (completed)
Smart Renovation Strategies for Sustainable Electrification
Future Secondary Fluids for indirect refrigeration systems
Smart Fault Detection and Diagnosis for Heat Pumps
Performance indicators for energy efficient supermarket buildings
Magnetic Refrigeration
High-Resolution GIS District Heating Source-Load Mapping
Smart Solar Hybrid Solutions for Sustainable European Buildings (completed)
Building state-of-the-art (SotA) supermarket: Putting theory into practice
Efficient utilization of industrial waste heat by low temperature heat driven power cycles – an integrated approach for Swedish Industry
Cooperation between Supermarkets and Real Estate Owners; Energy Efficiency and Business Models
Digitalization and IoT technologies for Heat Pump systems
Capacity control in Heat Pump systems
Alternative secondary fluids
Functional surface coatings for energy efficient heat pumps
Two-phase flow in flat channels
Two phase heat transfer & pressure drop with new environment friendly refrigerants in minichannels (completed)
Numerical Study on flow boiling in micro/mini channels (completed)
Distributed Cold Storages in District Cooling
Integrating Latent Heat Storage into Residential Heating Systems
Simulation of temperature distribution in borehole thermal storages supported by fiber optic temperature measurements (completed)
Solar energy and ground source heat pumps for Swedish multi-family housing (completed)
Neutrons for Heat Storage, NHS, (completed)
4D Monitoring of BTES (completed)
Aquifer Thermal Energy Storage (completed)
Deep Borehole Heat Exchanger (completed)
Combined Heat and Power plants in combination with borehole thermal energy storage (completed)
Improved borehole technology for Geothermal Heat Pumps development (completed)
Compact Minichannel Latent Energy Storage for Air Related Cold Storage Applications
Building heating solutions in China
Toward Sustainable (Fossil-free) Heating System in Small Residential Buildings
Renewable Energy Park, RE-Park (completed)
Efficient use of energy wells for heat pumps (completed)
Efficient design of geothermal heating systems (completed)
SPF (completed)