Skip to main content
To KTH's start page

Wuxi Sino-Swedish Eco-City Project (completed)

The project aims at investigating the energy system and innovation process for an upcoming EcoCity in China.

With a growth in urbanization, cities are expected to be at the heart of future innovation in energy efficiency. Wuxi Sino-Swedish EcoCity is a unique project, spanning over an area of 2.4 km 2. The project served to showcase different technological solutions in the area of energy efficiency and sustainability that can be used as a hotbed for innovation development and large-scale implementation.

Project Introduction

The EcoCity is a part of the Taihu New District in Wuxi. The project is sponsored by Swedish Energy Agency’s STEM program. During its current phase the project is focused on two areas. Firstly to analyse the energy system of the eco city using a systems thinking approach. The eco city system has been divided into different subsystems and each subsystem will be analysed in order to set quantitative and qualitative targets for the city. As a first step a dynamic systems model is being created and based on it different scenarios will be generated. The second part of the project focuses on innovation diffusion in the context of urban environments. This part will investigate the different stages of innovation for eco cities and various factors associated with it. The project will culminate in final recommendations for the EcoCity on different criterion for successful implementation of EcoCity concept and an analysis of the energy plan.  

Conceptual Systems Model for Wuxi Eco-City
Conceptual Systems Model for Wuxi Eco-City

Aims

  • To develop a systems model taking into consideration all major energy subsystems.
  • In-depth analysis of the energy system.
  • Develop an innovation system model for the EcoCity.
Sustainable Geothermal Energy for the Future: AI in ATES
Warm water systems, losses and Legionella
PARMENIDES – Plug & plAy EneRgy ManagEmeNt for hybriD Energy Storage
HYSTORE - Hybrid services from advanced thermal energy storage systems
Open-source models for holistic building energy system design at scale
Tank to Grave Management of new Low-GWP Refrigerants (Hantering av nya låg-GWP köldmedier från installation till destruktion)
Novel tool and guidelines for designing ground source heat pumps (GSHPs) in densely populated areas
Data driven lab for building energy systems
Long-term performance measurement of GSHP systems serving commercial, institutional and multi-family buildings
Open-source models for holistic building energy system design at scale
Control systems for hybrid solutions based on biomass fueled Stirling engines, solar and wind for rural electrification
Prosumer-Centric Communication for Solar PV Diffusion (completed)
Towards Sustainable (Fossil-free) Heating System in Small Residential Buildings
Solar energy and ground source heat pumps for Swedish multi-family housing (completed)
Solar photovoltaic systems in Swedish cooperative housing (completed)
Smart Control Strategies for Heat Pump Systems (completed)
Creating and Understanding Smart Innovation in Cities
Building heating solutions in China
Accelerating innovation in buildings
High-Resolution GIS District Heating Source-Load Mapping
Digitalization and IoT technologies for Heat Pump systems
Sustainable combined systems for heating of buildings (completed)
Cost- and Energy-Efficient Control Systems for Buildings
Situation of Opportunity in the Growth and Change of three Stockholm City Districts (completed)
Wuxi Sino-Swedish Eco-City Project (completed)
Smart Renovation Strategies for Sustainable Electrification
Future Secondary Fluids for indirect refrigeration systems
Smart Fault Detection and Diagnosis for Heat Pumps
Performance indicators for energy efficient supermarket buildings
Magnetic Refrigeration
High-Resolution GIS District Heating Source-Load Mapping
Smart Solar Hybrid Solutions for Sustainable European Buildings (completed)
Building state-of-the-art (SotA) supermarket: Putting theory into practice
Efficient utilization of industrial waste heat by low temperature heat driven power cycles – an integrated approach for Swedish Industry
Cooperation between Supermarkets and Real Estate Owners; Energy Efficiency and Business Models
Digitalization and IoT technologies for Heat Pump systems
Capacity control in Heat Pump systems
Alternative secondary fluids
Functional surface coatings for energy efficient heat pumps
Two-phase flow in flat channels
Two phase heat transfer & pressure drop with new environment friendly refrigerants in minichannels (completed)
Numerical Study on flow boiling in micro/mini channels (completed)
Distributed Cold Storages in District Cooling
Integrating Latent Heat Storage into Residential Heating Systems
Simulation of temperature distribution in borehole thermal storages supported by fiber optic temperature measurements (completed)
Solar energy and ground source heat pumps for Swedish multi-family housing (completed)
Neutrons for Heat Storage, NHS, (completed)
4D Monitoring of BTES (completed)
Aquifer Thermal Energy Storage (completed)
Deep Borehole Heat Exchanger (completed)
Combined Heat and Power plants in combination with borehole thermal energy storage (completed)
Improved borehole technology for Geothermal Heat Pumps development (completed)
Compact Minichannel Latent Energy Storage for Air Related Cold Storage Applications
Building heating solutions in China
Toward Sustainable (Fossil-free) Heating System in Small Residential Buildings
Renewable Energy Park, RE-Park (completed)
Efficient use of energy wells for heat pumps (completed)
Efficient design of geothermal heating systems (completed)
SPF (completed)