Skip to main content
To KTH's start page

Techno-economic and feasibility assessment for nuclear plants combination with CO2 sequestration and green fuels production units

Project Description

Nuclear power and hydropower form the backbone of low-carbon electricity generation. Together, they provide three-quarters of global low-carbon generation. Over the past 50 years, the use of nuclear power has reduced CO2 emissions by over 60 Gtonnes – nearly two years’ worth of global energy-related emissions. However, in advanced economies, nuclear power has begun to fade, with plants closing and little new investment made, just when the world requires more low-carbon electricity. A range of technologies, including nuclear power, will be needed for clean energy transitions around the world. Global energy is increasingly based around electricity. That means the key to making energy systems clean is to turn the electricity sector from the largest producer of CO2 emissions into a low-carbon source that reduces fossil fuel emissions in areas like transport, heating and industry. While renewables are expected to continue to lead, nuclear power can also play an important part along with fossil fuels using carbon capture, utilisation and storage. Countries envisaging a future role for nuclear account for the bulk of global energy demand and CO2 emissions. But to achieve a trajectory consistent with sustainability targets – including international climate goals – the expansion of clean electricity would need to be three times faster than at present. It would require 85% of global electricity to come from clean sources by 2040, compared with just 36% today. Along with massive investments in efficiency and renewables, the trajectory would need an 80% increase in global nuclear power production by 2040. Nuclear power plants contribute to electricity security in multiple ways. Nuclear plants help to keep power grids stable. To a certain extent, they can adjust their operations to follow demand and supply shifts. As the share of variable renewables like wind and solar photovoltaics (PV) rises, the need for such services will increase. Nuclear plants can help to limit the impacts from seasonal fluctuations in output from renewables and bolster energy security by reducing dependence on imported fuels.

The aim of this thesis is to develop techno-economic models and feasibility assessments to investigate the performance and potential of hybridizing nuclear power plants with collocated PV park, stationary batteries (BESS), electrolyser for H2 production, direct air carbon capture, and green fuel production units. Different integration opportunities and layouts will be defined in the early stages and later investigated. The MSc Thesis is performed in cooperation with Uniper/OKG, including the support of a dedicated supervisor. Compensation might be recognized at the end of the Thesis depending on the performance. Considering the broad scope of the Thesis and the large set of system integration opportunities this Thesis can be addressed by multiple students.

Main Deliverables

The main deliverables of the project include:

  • Final project report and presentation comprising description of project, literature review, integrated solution definition via specific layout and operation descriptions, techno-economic modelling technique (including main assumptions and equations), techno-economic performance assessment and system optimization, and final suggestions.
  • Models and user guidelines / instructions.

Duration

The project should start in January/February 2024 the latest and should not extend for more than 6 months.

Specific starting date to be discussed.

Location

KTH - Energy Department and Uniper/OKG in Oskarshamn.

Main Supervisors

Contact person

Taras Koturbash
Taras Koturbash research engineer
Rafael Guedez
Rafael Guedez researcher

Examiner

Justin Chiu
Justin Chiu associate professor
Page responsible:Oxana Samoteeva
Belongs to: Energy Technology
Last changed: Nov 21, 2023
Sodium-Ion Batteries: Building the Foundation for a Greener Future via Life-Cycle Assessment and Techno-Economic modelling
Development of compact I-V curve tracer and load simulator for photovoltaic laboratory test rig
Development of remotely accessible battery laboratory exercise test rig
Experimental investigation of the flow dynamics in moving bed heat exchanger for powder particles
Experimental investigation of vertical electric heater for powder particles for CSP applications and energy storage
Investigation of usage of different methane fuel qualities for rocket engines with respect to the pyrolysis stability
CFD based design study of heat exchangers for high temperature heat pump applications.
Biogas production/storage for lessened dependency on oil
Refurbishment Strategy Based on Smart Radiator Controllers
Solar Photovoltaic-Thermal Integration with Ground Source Heat Pump Systems for Single-Family Houses
Integration of Solar Photovoltaic-Thermal (PVT) Collectors in District Heating Networks
Heat Propagation in High-Temperature Geothermal Wells
Experimental evaluation of advanced features of a modern heat pumping system
Energy use optimization of vertical farming systems
Rethinking Capacity Development in Energy Modeling: Integrating Local and Indigenous Knowledge Systems in Transboundary Contexts
Optimizing Waste Treatment Pathways for Sustainable District Heating Development: Integrating Material Flow and District Heating Models in OSeMOSYS
Evaluation of Direct and Indirect Methods for Occupancy Detection and Air Quality Control in Buildings
Data-driven Analysis of Building Energy Performance Using Boverket Energy Declarations and real-time data
Social Life-cycle impact assessment of innovative cascade PCM based thermal energy storage solutions
Water Demand Forecasting from Multipurpose Reservoirs in Cochabamba, Bolivia, to 2050: A Sustainable Energy Perspective
Electrification of the heating sector in Europe
Safe use of flammable refrigerants-literature review
Safe use of flammable refrigerants-Modeling concentrations of the leaked refrigerants in case of accidental emissions in different scenarios
Boiling inside rectangular microchannels: Investigating the use of high-speed IR camera for temperature readings
Characteristics and kinetic study on catalytic and non-catalytic pyrolysis of PVC and wind blades in molten salts via thermogravimetric analysis
Characterization of Phase Change Materials for a real Thermal Energy Storage Application
Predictive model control design for a small-scale steam engine based multi-source CHP system
Solar hydrogen production by photocatalytic reforming of cellulose with concentrated sunlight
Circularity of batteries
Kartläggning och Optimering av kyla på KTH Campus
Battery application in harbour environment
Empowering the Future: Innovating Sustainable Energy with Digital Heat Pump Solutions
Optimizing Energy Performance in Existing Urban Building Stocks: A Comprehensive Analysis and Strategic Approach for Sustainable Operation
Techno-economic and feasibility assessment for nuclear plants combination with CO2 sequestration and green fuels production units
Techno-economic and feasibility assessment for nuclear plants integration in flexible future energy systems for grid balancing and ancillary services
Analysis of Residual Resources
Life-cycle impact assessment of innovative cascade PCM based thermal energy storage solutions
Techno-economic assessment and optimization of seasonal thermal energy storage in district heating networks
Final Commissioning and Experimental Performance Characterization of a Bench-scale Thermochemical Heat Storage System (SEU/SPG)
Renewables and Demand Side Management
Circularity measurement for automotive industries
Experimental Investigation of Optimal Flow in Borehole Heat Exchanger at KTH Live-in Lab
Low Global Warming Potential Refrigerants for high temperature heat pumps
Development of battery test rig: Remote Battery Lab
Comparative analysis of thermal storage options for industrial steam generation in a solar thermal integrated system
Development, Implementation & Evaluation of an optimized operation algorithm for a Li-Ion battery Energy Management System (EMS) at Tezpur University
De-icing of trains in a Nordic climate
Calibration of a measurement system for methane pyrolysis detection in rocket nozzles
Experimental study on the effect of rocket nozzle wall materials on the stability of methane
Sanitary water flows for housing
Evaluating the potential of energy efficiency improvement in combined cycle power generation to minimize the CO2 footprint in the context of Sri Lanka
Smart and Sustainable Oskarshamn: Energy Management and urban system analysis
Aqueous ammonia in refrigeration applications
Photovoltaic system design, installation and performance evaluation: PV Lab test rig
Ground source heat pumps in densely populated areas - a techno-economic study
Replacement of old ground-source heat pumps – a techno-economic study
PV-ESS system optimization to maximize self-consumption of PV-generated in KTH live-in lab
Environmental assessment of SESS applications based on cradle to grave LCA
High and low temperature electrolysis integration in Combined Cycles
Novel solar technologies and SOEC integration for synthetic fuels
Digitalization of HVAC schema drawings
Development & implementation of an improved operation algorithm for a Li-Ion battery energy management system (EMS) at Tezpur University
Techno-economical analysis of large refrigeration systems - operational and maintenance strategies
Comparision of high fidelity and real-time CFD methods for simulating thermal comfort
Data driven heat pump models for generation of electrical load profiles at DSO level
Master thesis at Bosch Thermoteknik
Geospatial modelling in support to Energy Access in Putumayo Colombia
EPIC Africa CLEWs assessment supporting Burkina Faso’s development plans
Using machine learning to spatially classify current technologies used for cooking in developing countries
Accounting for affordability constrains in geospatial modelling of clean cooking access
Rethinking Capacity Development in Energy Modeling: Integrating Local and Indigenous Knowledge Systems in Transboundary Contexts
Optimizing Waste Treatment Pathways for Sustainable District Heating Development: Integrating Material Flow and District Heating Models in OSeMOSYS
Enhancing Socio-Economic Impact Assessment in Climate-Compatible and Self-Sufficient Rural Communities through Integrated Resource Optimization Models
Climate impact of renovation projects in the built environment– zooming in on technical installations